地理情報システムにおける点や線情報の表現

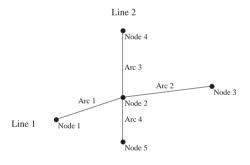
1 点や線情報の表現方法

紙地図に対して、コンピュータで扱うことできる地図は、**電子地図**とか**デジタルマップ**と呼ばれている.様々な地図がコンピュータで扱えると、地図同士を重ね合わせたり、適地選定をするのに非常に効果的である.このような電子地図を用いて、様々な解析が行えるシステムを**地理情報システム**と呼んでいる.地理情報システムは、マーケティング、都市計画、防災、道路や上下水道等の管理、資産税管理等に利用されている.

地理情報システムにおいて、最も単純な構造の情報は、点情報である。様々な位置を点で表すが、 この点の位置は座標によって表現する。したがって、下表のようなデータ構造となる。

ID	X	Y	Item
1	19776.7(m)	63853.1(m)	三宝山
2	20252.2(m)	68867.8(m)	工科大
3	18278.0(m)	69343.4(m)	風車

道路や河川の位置は、その中心線で表現し、下図のように線分の集合(折れ線)とすれば便利である。線分の端点を**ノード** (Node) といい、ノードを結ぶ直線を**アーク** (Arc) という。ノードは、点の情報である。



したがって、地理情報のデータとしては、ラインごとにノードとアークの情報を別々に持たせる構造でなければならない。したがって下表のように3つの情報が必要となる。

Node	X	Y
1	x_1	y_1
2	x_2	y_2
3	x_3	y_3
4	x_4	y_4
5	x_5	y_5

Arc	Start Node	End Node
1	Node 1	Node 2
2	Node 2	Node 3
3	Node 4	Node 2
4	Node 2	Node 5

Line 1	Arc 1	Arc 2
Line 2	Arc 3	Arc 4

2 直線と点との最短距離

地理情報システムにおいて、ある点とある線との距離を求める場合を考える。このとき、線の情報は線分に分割されているので、線分と点との最短距離を求めることになる。線分の方程式は媒介変数を用いれば簡単に表現できるので、その方程式と点との最短距離を求めることになる。

2.1 微分法を用いた計算

点 (x_0,y_0) を通り、ベクトル $\mathbf{a}=(x_a,y_a)$ に平行な直線と点 $P(x_p,y_p)$ との最短距離を求める。まず、直線と点 P との距離の二乗は、媒介変数 t を用いると、以下の式で表すことができる。

$$D^{2} = (x_{a}t + x_{0} - x_{p})^{2} + (y_{a}t + y_{0} - y_{p})^{2}$$
(1)

この距離が最短となる t の値が求まれば良い。上式は変数 t の下に凸な二次関数なので,t で微分し、その式が 0 となる t が最短距離となる直線上の点となる。

$$\frac{dD^2}{dt} = 0$$

$$2x_a(x_at + x_0 - x_p) + 2y_a(y_at + y_0 - y_p) = 0$$

$$(x_a^2 + y_a^2)t = x_a(x_p - x_0) + y_a(y_p - y_0)$$

$$t = \frac{x_a(x_p - x_0) + y_a(y_p - y_0)}{x_a^2 + y_a^2}$$
(2)

算出された t より直線上の点の座標を求め、続いて (x_p,y_p) との距離を求めれば、それが点と直線との最短距離となる。

2.2 内積を用いた計算

点 $P(x_p,y_p)$ から直線へ向かうベクトルは, $(x_at+x_0-x_p,y_at+y_0-y_p)$ となる.このベクトルと直線の方向ベクトルとの内積を計算し,内積が 0 となる点が直行する点,すなわち最短距離となる点となる.

$$x_a(x_at + x_0 - x_p) + y_a(y_at + y_0 - y_p) = 0$$

$$(x_a^2 + y_a^2)t = x_a(x_p - x_0) + y_a(y_p - y_0)$$

$$t = \frac{x_a(x_p - x_0) + y_a(y_p - y_0)}{x_a^2 + y_a^2}$$
(3)

このように、微分を用いて求めた t と同じ式となる。なお、何れにしても t が 0 < t < 1 の場合に線分内部において最短距離が存在することになる。したがって、線分ごとに最短距離を求めたとき、t が 0 < t < 1 となっているか、チェックする必要がある。