IMPACTS OF SEA LEVEL RISE in Bangkok, Thailand

Hiroaki KAKIUCHI

Chuo Mapping Co., Ltd

Takekazu AKAGIRI, Takahito KUROKI, Tohru NAGAYAMA Geographic Survey Institute, Min. of Construction, JAPAN

Shunji MURAI, Ryosuke SHIBASAKI, Masataka TAKAGI Institute of Industrial Science, Univ. of TOKYO

Course of Sea Level Rise

♦ Global Warming by Green House Gas Emission

- ♦ Ice-melting
- Increasing Precipitation

Related Factors of Sea Level Rise

- Ground Subsidence
 - Pumping Ground Water

♦ Poor Drainage

- Construction of Artificial Structure
- Beach Erosion
 - Reclamation of Mangrove Forest

Objectives

• Estimation of Submergence Area from DEM

- Prediction of Damage by using R/S data and GIS
 - Population
 - Property Loss
- Evaluation of Land Use Suitability using GIS

Materials

Test Area: Bangkok, Thailand

Digital Elevation Model

- Contour Maps and LANDSAT TM
- Field Measurement using GPS
- ◆ Land Use Map using LANDSAT TM
 - Visual Interpretation by Expert
 - Automated Classification by Maximum Likelihood Method
- Socio-Economic Data
 - Population
 - Land Productivity
 - ♦ Land Price

Geomorphological Map from LANDSAT TM

Averaged Profile in Each Geomorphological Classes

Zone No. (Distance from a coastal Line

LANDSAT TM False Color Image

Land Use Map by Visual Interpretation

Land Use Map by Maximum Likelihood Method

Estimation Method of Submergence Area

- Submergence area according to sea level rise can be calculated from DEM
- Sea level rise influences river water level and tide
 - Corrected DEM was used

Corrected Current - ((Sea Reduction River Level) Water Level)

General Idea of Corrected Elevation Calculation

Estimation of River Water Level Increasing by Sea Level Rise

Water Level Measurement Points and the Results

No.	Water Level	Amplitude	Reduction Ratio
S-06	55.00	166.00	100.00
S-10	76.00	140.00	84.00
S-14	105.00	105.00	63.00
S-17	136.00	64.50	39.00
S-19	148.00	47.00	28.00
S-24	192.00	22.50	14.00
	(cm)	(cm)	(%)

Estimated River Water Level Map

Estimated Submergence Area by 1m Sea Level Rise

Estimated Submergence Area by Sea Level Rise

Estimation of Degree of Damage

Socio-Economic Data

- 103 Administrative Districts (Tanbon) in test Area
- Population, Land Price, Economic Productivity (from NRCT)

Land Use	Land Price	
Paddy Field	1750	
Orchard	1833	
Mangrove	2250	
Fish Pond	1333	
Residential	5000	
Commercial	15313	
	(Baht/m2)	

Land Price

Productivity

Land Use	Productivity	
Commercial	1060	
Residential	37	
Industrial	4260	
Agricultural	9	
Fish Pond	5	
Other	727	
	(Baht/m2)	

Estimated Suffered Population by Sea Level Rise

Estimated Economic Property Loss by Sea Level Rise

Estimated Property Loss from each Land Use Map

Suitability of Current Land Use

Items	Unsuitable	Usual	Suitable
Residential	0.0-0.8	0.9-1.6	1.7-5.0
Industrial	0.0-1.6	1.7-2.2	2.3-5.0
Commercial	0.0-1.2	1.3-1.8	1.9-5.0
Public Facility	0.0-1.4	1.5-2.0	2.1-5.0
Rice Field	0.0-0.8	0.9-2.0	2.1-5.0
Orchard	0.0-0.8	0.9-1.6	1.7-5.0
Fishpond	0.0-0.6	0.7-1.4	1.5-5.0

Evaluation Table of Land Use Category and Corrected Elevation

Suitability Map

Suitability Map

Conclusions

- Submergence area can be extracted from DEM.
 - ◆ High accurate DEM is required.
- ◆ GIS was very efficient for damage prediction.
- Im rise of sea level will make serious damage in Bangkok.